Source code for mindspore.nn.optim.ada_grad

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""ADA_GRAD"""
from mindspore.ops import functional as F, composite as C, operations as P
from mindspore._checkparam import Validator as validator
from .optimizer import Optimizer

_ada_grad_opt = C.MultitypeFuncGraph("ada_grad_opt")


@_ada_grad_opt.register("Function", "Tensor", "Tensor", "Tensor", "Tensor")
def _tensor_run_opt(opt, learning_rate, weight, accum, gradient):
    """Apply ada_grad optimizer to the weight parameter."""
    success = True
    success = F.depend(success, opt(weight, accum, learning_rate, gradient))
    return success


def _check_param_value(accum, update_slots, prim_name=None):
    """Check inputs param."""
    validator.check_value_type("accum", accum, [float], prim_name)
    validator.check_value_type("update_slots", update_slots, [bool], prim_name)
    validator.check_non_negative_float(accum, "accum", prim_name)


[docs]class Adagrad(Optimizer): """ Implements the Adagrad algorithm with ApplyAdagrad Operator. Adagrad is an online Learning and Stochastic Optimization. Refer to paper `Efficient Learning using Forward-Backward Splitting <https://proceedings.neurips.cc/paper/2009/file/621bf66ddb7c962aa0d22ac97d69b793-Paper.pdf>`_. Note: When separating parameter groups, the weight decay in each group will be applied on the parameters if the weight decay is positive. When not separating parameter groups, the `weight_decay` in the API will be applied on the parameters without 'beta' or 'gamma' in their names if `weight_decay` is positive. To improve parameter groups performance, the customized order of parameters can be supported. Args: params (Union[list[Parameter], list[dict]]): When the `params` is a list of `Parameter` which will be updated, the element in `params` must be class `Parameter`. When the `params` is a list of `dict`, the "params", "lr", "weight_decay" and "order_params" are the keys can be parsed. - params: Required. The value must be a list of `Parameter`. - lr: Optional. If "lr" in the keys, the value of corresponding learning rate will be used. If not, the `learning_rate` in the API will be used. - weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay will be used. If not, the `weight_decay` in the API will be used. - order_params: Optional. If "order_params" in the keys, the value must be the order of parameters and the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which in the value of 'order_params' must be in one of group parameters. accum (float): The starting value for accumulators, must be zero or positive values. Default: 0.1. learning_rate (Union[float, Tensor, Iterable, LearningRateSchedule]): A value or a graph for the learning rate. When the learning_rate is an Iterable or a Tensor in a 1D dimension, use dynamic learning rate, then the i-th step will take the i-th value as the learning rate. When the learning_rate is LearningRateSchedule, use dynamic learning rate, the i-th learning rate will be calculated during the process of training according to the formula of LearningRateSchedule. When the learning_rate is a float or a Tensor in a zero dimension, use fixed learning rate. Other cases are not supported. The float learning rate must be equal to or greater than 0. If the type of `learning_rate` is int, it will be converted to float. Default: 0.001. update_slots (bool): If true, update accumulation. Default: True. loss_scale (float): Value for the loss scale. It must be greater than 0.0. Default: 1.0. weight_decay (float): Weight decay value to multiply weight, must be zero or positive value. Default: 0.0. Inputs: - **grads** (tuple[Tensor]) - The gradients of `params` in the optimizer, the shape is the same as the `params` in optimizer. Outputs: Tensor[bool], the value is True. Supported Platforms: ``Ascend`` ``CPU`` ``GPU`` Examples: >>> net = Net() >>> #1) All parameters use the same learning rate and weight decay >>> optim = nn.Adagrad(params=net.trainable_params()) >>> >>> #2) Use parameter groups and set different values >>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params())) >>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params())) >>> group_params = [{'params': conv_params, 'weight_decay': 0.01}, ... {'params': no_conv_params, 'lr': 0.01}, ... {'order_params': net.trainable_params()}] >>> optim = nn.Adagrad(group_params, learning_rate=0.1, weight_decay=0.0) >>> # The conv_params's parameters will use default learning rate of 0.1 and weight decay of 0.01. >>> # The no_conv_params's parameters will use learning rate of 0.01 and default weight decay of 0.0. >>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'. >>> >>> loss = nn.SoftmaxCrossEntropyWithLogits() >>> model = Model(net, loss_fn=loss, optimizer=optim) """ def __init__(self, params, accum=0.1, learning_rate=0.001, update_slots=True, loss_scale=1.0, weight_decay=0.0): super(Adagrad, self).__init__(learning_rate, params, weight_decay, loss_scale) _check_param_value(accum, update_slots, self.cls_name) self.accum = self.parameters.clone(prefix="accum", init=accum) self.hyper_map = C.HyperMap() self.update_slots = update_slots self.opt = P.ApplyAdagrad(update_slots=update_slots) def construct(self, grads): params = self.parameters accum = self.accum grads = self.decay_weight(grads) grads = self.scale_grad(grads) lr = self.get_lr() if self.is_group_lr: success = self.map_(F.partial(_ada_grad_opt, self.opt), lr, params, accum, grads) else: success = self.map_(F.partial(_ada_grad_opt, self.opt, lr), params, accum, grads) return success