tinyms.context

The context of TinyMS, used to configure the current execution environment, includeing the execution mode, execution backend and other feature switches.

tinyms.context.set_context(**kwargs)[source]

Set context for running environment.

Context should be configured before running your program. If there is no configuration, it will be automatically set according to the device target by default.

Note

Attribute name is required for setting attributes. The mode is not recommended to be changed after net was initialized because the implementations of some operations are different in graph mode and pynative mode. Default: PYNATIVE_MODE.

Some configurations are device specific, see the below table for details:

Function Classification

Configuration Parameters

Hardware Platform Support

System Configuration

device_id

CPU/GPU/Ascend

device_target

CPU/GPU/Ascend

max_device_memory

GPU/Ascend

variable_memory_max_size

Ascend

mempool_block_size

GPU/Ascend

op_timeout

Ascend

Debug Configuration

save_graphs

CPU/GPU/Ascend

save_graphs_path

CPU/GPU/Ascend

enable_dump

Ascend

save_dump_path

Ascend

deterministic

Ascend

print_file_path

Ascend

env_config_path

CPU/GPU/Ascend

precompile_only

CPU/GPU/Ascend

reserve_class_name_in_scope

CPU/GPU/Ascend

pynative_synchronize

GPU/Ascend

Executive Control

mode

CPU/GPU/Ascend

enable_graph_kernel

Ascend/GPU

graph_kernel_flags

Ascend/GPU

enable_reduce_precision

Ascend

auto_tune_mode

Ascend

check_bprop

CPU/GPU/Ascend

max_call_depth

CPU/GPU/Ascend

grad_for_scalar

CPU/GPU/Ascend

enable_compile_cache

CPU/GPU/Ascend

inter_op_parallel_num

CPU/GPU/Ascend

runtime_num_threads

CPU/GPU/Ascend

compile_cache_path

CPU/GPU/Ascend

disable_format_transform

GPU

support_binary

CPU/GPU/Ascend

memory_optimize_level

CPU/GPU/Ascend

memory_offload

GPU/Ascend

ascend_config

Ascend

Parameters:
  • device_id (int) – ID of the target device, the value must be in [0, device_num_per_host-1], while device_num_per_host should be no more than 4096. Default: 0.

  • device_target (str) – The target device to run, support “Ascend”, “GPU”, and “CPU”. If device target is not set, the version of MindSpore package is used.

  • max_device_memory (str) – Set the maximum memory available for devices. The format is “xxGB”. Default: “1024GB”. The actual used memory size is the minimum of the available memory of the device and max_device_memory.

  • variable_memory_max_size (str) – This parameter is deprecated, and will be removed in a future version. Please use parameter ‘max_device_memory’ instead.

  • mempool_block_size (str) – Set the size of the memory pool block in PyNative mode for devices. The format is “xxGB”. Default: “1GB”. Minimum size is “1G”. The actual used memory block size is the minimum of the available memory of the device and mempool_block_size.

  • op_timeout (int) – Set the maximum duration of executing an operator in seconds. If the execution time exceeds this value, system will terminate the task. 0 means endless wait. Default: 1900.

  • save_graphs (bool or int) –

    Whether to save intermediate compilation graphs. Default: 0. Available values are:

    • False or 0: disable saving of intermediate compilation graphs.

    • 1: some intermediate files will be generated during graph compliation.

    • True or 2: Generate more ir files related to backend process.

    • 3: Generate visualization computing graphs and detailed frontend ir graphs.

    When the save_graphs attribute is set as True, 1, 2 or 3, attribute of save_graphs_path is used to set the intermediate compilation graph storage path. By default, the graphs are saved in the current directory.

  • save_graphs_path (str) – Path to save graphs. Default: “.”. If the specified directory does not exist, the system will automatically create the directory. During distributed training, graphs will be saved to the directory of save_graphs_path/rank_${rank_id}/. rank_id is the ID of the current device in the cluster.

  • deterministic (str) –

    Whether to enable op run in deterministic mode. The value must be in the range of [‘ON’, ‘OFF’], and the default value is ‘OFF’.

    • ”ON”: Enable operator deterministic running mode.

    • ”OFF”: Disable operator deterministic running mode.

    When deterministic mode is on, model ops will be deterministic in Ascend. This means that if op run multiple times with the same inputs on the same hardware, it will have the exact same outputs each time. This is useful for debugging models.

  • enable_dump (bool) – This parameters is deprecated, and will be deleted in the next version.

  • save_dump_path (str) – This parameters is deprecated, and will be deleted in the next version.

  • print_file_path (str) – The path of saving print data. If this parameter is set, print data is saved to a file by default, and print_file_path is not set, the screen will be displayed. If the saved file already exists, the timestamp suffix will be added to the file. Saving data to a file solves the problem of data loss in screen printing when a large amount of data is generated. If it is not set, an error will be reported: prompt to set the upper absolute path.

  • env_config_path (str) –

    Config path for DFX. Through mindspore.set_context(env_config_path=”./mindspore_config.json”)

    configure RDR:

    • enable: controls whether the RDR is enabled to collect the key data during training and save key data in the fault scenario. When set to true, the RDR will be turned on. When set to false, the RDR will be turned off.

    • mode: sets the mode of RDR on exporting data. When set to 1, the RDR only exports data in the fault scenario. When set to 2, the RDR exports data in the fault scenario and the normal end scenario. Default: 1.

    • path: sets the path where RDR saves data. The current path must be absolute.

    Memory reuse:

    • mem_Reuse: controls whether the memory reuse function is turned on. When set to True,

    • the memory reuse function is turned on. When set to False, the memory reuse function is turned off.

  • precompile_only (bool) – Whether to only precompile the network. Default: False. If set to True, the network will only be compiled, not executed.

  • reserve_class_name_in_scope (bool) –

    Whether to save the network class name in the scope. Default: True. Each node has a scope. A scope of a subnode is the name of its parent node. If reserve_class_name_in_scope is set to True, the class name will be saved after keyword ‘net-’ in the scope. For example:

    Default/net-Net1/net-Net2 (reserve_class_name_in_scope=True)

    Default/net/net (reserve_class_name_in_scope=False)

  • pynative_synchronize (bool) – Whether to enable synchronous execution of the device in PyNative mode. Default: False. When the value is set to False, the operator is executed asynchronously on the device. When an error occurs in the execution of the operator, the specific error script code location cannot be located, when the value is set to True, the operator is executed synchronously on the device. It will reduce the execution performance of the program. At this time, when an error occurs in the execution of the operator, the location of the error script code can be located according to the call stack of the error.

  • mode (int) – Running in GRAPH_MODE(0) or PYNATIVE_MODE(1). Both modes support all backends. Default: PYNATIVE_MODE.

  • enable_graph_kernel (bool) – Whether to enable graph kernel fusion to optimize network execution performance. Default: False. Indicates whether to enable image-computing convergence to optimize network execution performance. If enable_graph_kernel is set to True, acceleration can be enabled. For details of graph kernel fusion, please check Enabling Graph Kernel Fusion.

  • graph_kernel_flags (str) –

    Optimization options of graph kernel fusion, and the priority is higher when it conflicts with enable_graph_kernel. Only for experienced users. For example, mindspore.set_context(graph_kernel_flags=”–opt_level=2 –dump_as_text”). Some general options:

    • opt_level: Set the optimization level. Default: 2. Graph kernel fusion can be enabled equivalently by setting opt_level greater than 0. Available values are:

      • 0: disables graph kernel fusion;

      • 1: enables the basic fusion of operators;

      • 2: includes all optimizations of level 1, and turns on more optimizations such as CSE, arithmetic simplification and so on;

      • 3: includes all optimizations of level 2, and turns on more optimizations such as SitchingFusion, ParallelFusion and so on. Optimizations of this level are radical and unstable in some scenarios. Be caution when using this level.

    • dump_as_text: dumps detail info as text files. Default: false.

    More options can refer to the implementation code.

  • enable_reduce_precision (bool) – Whether to enable precision reduction. If the operator does not support the user-specified precision, the precision will be changed automatically. Default: True.

  • auto_tune_mode (str) –

    The mode of auto tune when op building, get the best tiling performance. Default: NO_TUNE. The value must be in [‘RL’, ‘GA’, ‘RL,GA’].

    • RL: Reinforcement Learning tune.

    • GA: Genetic Algorithm tune.

    • RL,GA: When both RL and GA optimization are enabled, the tool automatically selects RL or GA based on different types of operators in the network model. The sequence of RL and GA is not differentiated. (Automatic selection).

    For more information about the enable operator tuning tool settings, please check Enable the operator optimization tool.

  • check_bprop (bool) – Whether to check back propagation nodes. The checking ensures that the shape and dtype of back propagation node outputs is the same as input parameters. Default: False.

  • max_call_depth (int) – Specify the maximum depth of function call. Must be positive integer. Default: 1000. The max_call_depth parameter needs to be set when the nested call is too deep or the number of subgraphs is too large. If max_call_depth is set larger than before, the system max stack depth should be set larger too, otherwise a core dumped exception may be raised because of system stack overflow.

  • grad_for_scalar (bool) – Whether to get gradient for scalar. Default: False. When grad_for_scalar is set to True, the function’s scalar input can be derived. The default value is False. Because the back-end does not support scaling operations currently, this interface only supports simple operations that can be deduced by the front-end.

  • enable_compile_cache (bool) – Whether to save or load the cache of the graph compiled by front-end. After enable_compile_cache is set to True, during the first execution, a hardware-independent compilation cache is generated and exported to a MINDIR file. When the network is executed again, if enable_compile_cache is still set to True and the network scripts are not changed, the compile cache is loaded. Note that only limited automatic detection for the changes of python scripts is supported by now, which means that there is a correctness risk. Default: False. This is an experimental prototype that is subject to change and/or deletion.

  • compile_cache_path (str) – Path to save the compile cache. Default: “.”. If the specified directory does not exist, the system will automatically create the directory. The cache will be saved to the directory of compile_cache_path/rank_${rank_id}/. The rank_id is the ID of the current device in the cluster.

  • inter_op_parallel_num (int) – The thread number of op parallel at the same time. Default value is 0, which means use the default num.

  • runtime_num_threads (int) – The thread pool number of cpu kernel used in runtime, which must bigger than or equal to 0. Default value is 30, if you run many processes at the same time, you should set the value smaller to avoid thread contention.

  • disable_format_transform (bool) – Whether to disable the automatic format transform function from NCHW to NHWC. When the network training performance of fp16 is worse than fp32, disable_format_transform can be set to True to try to improve training performance. Default: False.

  • support_binary (bool) – Whether to support run .pyc or .so in graph mode. If want to support run .so or .pyc in graph mode, coulde set ‘support_binary’ to be True, and run once .py file. It would save the source of the interfaces would be compiled by MindSpore to the interfaces definition .py file that should be guaranteed to be writable. Then compile the .py file to the .pyc or .so file, and could run in Graph mode.

  • memory_optimize_level (str) –

    The memory optimize level. Default: O0. The value must be in [‘O0’, ‘O1’].

    • O0: priority performance option, disable SOMAS (Safe Optimized Memory Allocation Solver).

    • O1: priority memory option, enable SOMAS.

  • memory_offload (str) –

    Whether to enable the memory offload function. When it is enabled, the idle data will be temporarily copied to the host side in the case of insufficient device memory. The value must be in the range of [‘ON’, ‘OFF’], and the default value is ‘OFF’.

    • ON: Enable the memory Offload function. On Ascend hardware platform, this parameter does not take effect when the environment variable “GRAPH_OP_RUN=1” is not set; This parameter does not take effect when memory_optimize_level is set ‘O1’.

    • OFF: Turn off the memory Offload function.

  • ascend_config (dict) –

    Set the parameters specific to Ascend hardware platform. It is not set by default. Currently, only setting precision_mode and jit_compile are supported on Ascend910B hardware platform. The default value of precision_mode and jit_compile are experimental parameters, may change in the future.

    • precision_mode (str): Mixed precision mode setting, on Ascend910B hardware platform, the default value of training network is based on the value of CANN, and the default value of inference network is force_fp16. The value range is as follows:

      • force_fp16: When the operator supports both float16 and float32, select float16 directly.

      • allow_fp32_to_fp16: When the operator does not support the float32 data type, directly reduce the precision of float16.

      • allow_mix_precision: Automatic mixing precision, facing the whole network operator, according to the built-in optimization strategy, automatically reduces the precision of some operators to float16 or bfloat16.

      • must_keep_origin_dtype: Keep the accuracy of the original drawing.

      • force_fp32: When the input of the matrix calculation operator is float16 and the output supports float16 and float32, output is forced to float32.

      • force_lowerprecision: When the operator supports both float16 or bfloat16 and float32, select float16 or bfloat16 directly.

      • allow_fp32_to_bf16: When the operator does not support the float32 data type, directly reduce the precision of bfloat16.

      • allow_fp32_to_lowprecision: When the operator does not support the float32 data type, directly reduce the precision of float16 or bfloat16.

      • allow_mix_precision_fp16: Automatic mixing precision, facing the whole network operator, automatically reduces the precision of some operators to float16 according to the built-in optimization strategy.

      • allow_mix_precision_bf16: Automatic mixing precision, facing the whole network operator, according to the built-in optimization strategy, automatically reduces the precision of some operators to bfloat16.

    • jit_compile (bool): Whether to select online compilation. the default value is based on CANN.

Raises:

ValueError – If input key is not an attribute in context.

Examples

>>> import mindspore as ms
>>> ms.set_context(mode=ms.PYNATIVE_MODE)
>>> ms.set_context(precompile_only=True)
>>> ms.set_context(device_target="Ascend")
>>> ms.set_context(device_id=0)
>>> ms.set_context(save_graphs=True, save_graphs_path="./model.ms")
>>> ms.set_context(enable_reduce_precision=True)
>>> ms.set_context(enable_graph_kernel=True)
>>> ms.set_context(graph_kernel_flags="--opt_level=2 --dump_as_text")
>>> ms.set_context(reserve_class_name_in_scope=True)
>>> ms.set_context(variable_memory_max_size="6GB")
>>> ms.set_context(check_bprop=True)
>>> ms.set_context(max_device_memory="3.5GB")
>>> ms.set_context(mempool_block_size="1GB")
>>> ms.set_context(print_file_path="print.pb")
>>> ms.set_context(max_call_depth=80)
>>> ms.set_context(env_config_path="./env_config.json")
>>> ms.set_context(auto_tune_mode="GA,RL")
>>> ms.set_context(grad_for_scalar=True)
>>> ms.set_context(enable_compile_cache=True, compile_cache_path="./cache.ms")
>>> ms.set_context(pynative_synchronize=True)
>>> ms.set_context(runtime_num_threads=10)
>>> ms.set_context(inter_op_parallel_num=4)
>>> ms.set_context(disable_format_transform=True)
>>> ms.set_context(memory_optimize_level='O0')
>>> ms.set_context(memory_offload='ON')
>>> ms.set_context(deterministic='ON')
>>> ms.set_context(ascend_config={"precision_mode": "force_fp16", "jit_compile": True})
tinyms.context.get_context(attr_key)[source]

Get context attribute value according to the input key. If some attributes are not set, they will be automatically obtained.

Parameters:

attr_key (str) – The key of the attribute.

Returns:

Object, The value of given attribute key.

Raises:

ValueError – If input key is not an attribute in context.

Examples

>>> import mindspore as ms
>>> ms.get_context("device_target")
>>> ms.get_context("device_id")
tinyms.context.set_auto_parallel_context(**kwargs)[source]

Set auto parallel context, only data parallel supported on CPU.

Note

Attribute name is required for setting attributes. If a program has tasks on different parallel modes, before setting a new parallel mode for the next task, interface mindspore.reset_auto_parallel_context() should be called to reset the configuration. Setting or changing parallel modes must be called before creating any Initializer, otherwise, it may have RuntimeError when compiling the network.

Some configurations are parallel mode specific, see the below table for details:

Common

AUTO_PARALLEL

device_num

gradient_fp32_sync

global_rank

loss_repeated_mean

gradients_mean

search_mode

parallel_mode

strategy_ckpt_load_file

all_reduce_fusion_config

strategy_ckpt_save_file

enable_parallel_optimizer

dataset_strategy

parallel_optimizer_config

pipeline_stages

enable_alltoall

grad_accumulation_step

auto_parallel_search_mode

comm_fusion

strategy_ckpt_config

Parameters:
  • device_num (int) – Available device number, the value must be in [1, 4096]. Default: 1.

  • global_rank (int) – Global rank id, the value must be in [0, 4095]. Default: 0.

  • gradients_mean (bool) – Whether to perform mean operator after allreduce of gradients. “stand_alone” do not support gradients_mean. Default: False.

  • gradient_fp32_sync (bool) – Run allreduce of gradients in fp32. “stand_alone”, “data_parallel” and “hybrid_parallel” do not support gradient_fp32_sync. Default: True.

  • parallel_mode (str) –

    There are five kinds of parallel modes, “stand_alone”, “data_parallel”, “hybrid_parallel”, “semi_auto_parallel” and “auto_parallel”. Note the pynative mode only supports the “stand_alone” and “data_parallel” mode. Default: “stand_alone”.

    • stand_alone: Only one processor is working.

    • data_parallel: Distributes the data across different processors.

    • hybrid_parallel: Achieves data parallelism and model parallelism manually.

    • semi_auto_parallel: Achieves data and model parallelism by setting parallel strategies.

    • auto_parallel: Achieving parallelism automatically.

  • search_mode (str) –

    There are three kinds of shard strategy search modes: “recursive_programming”, “dynamic_programming” and “sharding_propagation”. Default: “dynamic_programming”.

    • recursive_programming: Recursive programming search mode.

    • dynamic_programming: Dynamic programming search mode.

    • sharding_propagation: Propagate shardings from configured ops to non-configured ops.

  • auto_parallel_search_mode (str) – This is the old version of ‘search_mode’. Here, remaining this attribute is for forward compatibility, and this attribute will be deleted in a future MindSpore version.

  • parameter_broadcast (bool) – Whether to broadcast parameters before training. Before training, in order to have the same network initialization parameter values for all devices, broadcast the parameters on device 0 to other devices. Parameter broadcasting in different parallel modes is different, data_parallel mode, all parameters are broadcast except for the parameter whose attribute layerwise_parallel is True. Hybrid_parallel, semi_auto_parallel and auto_parallel mode, the segmented parameters do not participate in broadcasting. Default: False.

  • strategy_ckpt_load_file (str) – The path to load parallel strategy checkpoint. The parameter is not to be recommended currently, it is better using ‘strategy_ckpt_config’ to replace it. Default: ‘’

  • strategy_ckpt_save_file (str) – The path to save parallel strategy checkpoint. The parameter is not to be recommended currently, it is better using ‘strategy_ckpt_config’ to replace it. Default: ‘’

  • full_batch (bool) – If you load whole batch datasets in auto_parallel mode, this parameter should be set as True. Default: False. The interface is not to be recommended currently, it is better using ‘dataset_strategy’ to replace it.

  • dataset_strategy (Union[str, tuple]) – Dataset sharding strategy. Default: “data_parallel”. dataset_strategy=”data_parallel” is equal to full_batch=False, dataset_strategy=”full_batch” is equal to full_batch=True. For execution mode is ‘GRAPH_MODE’ and dataset load into net by model parallel strategy likes ds_stra ((1, 8), (1, 8)), it requires using set_auto_parallel_context(dataset_strategy=ds_stra).

  • enable_parallel_optimizer (bool) – This is a developing feature, which shards the weight update computation for data parallel training in the benefit of time and memory saving. Currently, auto and semi auto parallel mode support all optimizers in both Ascend and GPU. Data parallel mode only supports Lamb and AdamWeightDecay in Ascend . Default: False.

  • enable_alltoall (bool) – A switch that allows AllToAll operators to be generated during communication. If its value is False, there will be a combination of operators such as AllGather, Split and Concat instead of AllToAll. Default: False.

  • all_reduce_fusion_config (list) – Set allreduce fusion strategy by parameters indices. Only support ReduceOp.SUM and HCCL_WORLD_GROUP/NCCL_WORLD_GROUP. No Default, if it is not set, the fusion is closed.

  • pipeline_stages (int) – Set the stage information for pipeline parallel. This indicates how the devices are distributed alone in the pipeline. The total devices will be divided into ‘pipeline_stags’ stages. Currently, this could only be used when parallel mode semi_auto_parallel is enabled. Default: 1.

  • grad_accumulation_step (int) – Set the accumulation steps of gradients in auto and semi auto parallel mode. This should be a positive int. Default: 1.

  • parallel_optimizer_config (dict) –

    A dict contains the keys and values for setting the parallel optimizer configure. The configure provides more detailed behavior control about parallel training when parallel optimizer is enabled. Currently it supports the key gradient_accumulation_shard. The configure will be effective when we use mindspore.set_auto_parallel_context(enable_parallel_optimizer=True). It supports the following keys.

    • gradient_accumulation_shard(bool): If true, the accumulation gradient parameters will be sharded across the data parallel devices. This will introduce additional communication(ReduceScatter) at each step when accumulate the gradients, but saves a lot of device memories, thus can make model be trained with larger batch size. This configure is effective only when the model runs on pipeline training or gradient accumulation with data parallel. Default True.

    • parallel_optimizer_threshold(int): Set the threshold of parallel optimizer. When parallel optimizer is enabled, parameters with size smaller than this threshold will not be sharded across the devices. Parameter size = shape[0] * … * shape[n] * size(dtype). Non-negative. Unit: KB. Default: 64.

  • comm_fusion (dict) –

    A dict contains the types and configurations for setting the communication fusion. each communication fusion config has two keys: “mode” and “config”. It supports following communication fusion types and configurations:

    • openstate: Whether turn on the communication fusion or not. If openstate is True, turn on the communication fusion, otherwise, turn off the communication fusion. Default: True.

    • allreduce: If communication fusion type is allreduce. The mode contains: auto, size and index. In auto mode, AllReduce fusion is configured by gradients size and the default fusion threshold is 64 MB. In ‘size’ mode, AllReduce fusion is configured by gradients size manually, and the fusion threshold must be larger than 0 MB. In index mode, it is same as all_reduce_fusion_config.

    • allgather: If communication fusion type is allgather. The mode contains: auto, size. In auto mode, AllGather fusion is configured by gradients size, and the default fusion threshold is 64 MB. In ‘size’ mode, AllGather fusion is configured by gradients size manually, and the fusion threshold must be larger than 0 MB.

    • reducescatter: If communication fusion type is reducescatter. The mode contains: auto and size. Config is same as allgather.

  • strategy_ckpt_config (dict) –

    A dict contains the configurations for setting the parallel strategy file. This interface contains the functions of parameter strategy_ckpt_load_file and strategy_ckpt_save_file, it is recommonded to use this parameter to replace those two parameters. It contains following configurations:

    • load_file (str): The path to load parallel strategy checkpoint. If the file name extension is .json, the file is loaded in JSON format. Otherwise, the file is loaded in ProtoBuf format. Default: ‘’

    • save_file (str): The path to save parallel strategy checkpoint. If the file name extension is .json, the file is saved in JSON format. Otherwise, the file is saved in ProtoBuf format. Default: ‘’

    • only_trainable_params (bool): Only save/load the strategy information for trainable parameter. Default: True.

Raises:

ValueError – If input key is not attribute in auto parallel context.

Examples

>>> import mindspore as ms
>>> ms.set_auto_parallel_context(device_num=8)
>>> ms.set_auto_parallel_context(global_rank=0)
>>> ms.set_auto_parallel_context(gradients_mean=True)
>>> ms.set_auto_parallel_context(gradient_fp32_sync=False)
>>> ms.set_auto_parallel_context(parallel_mode="auto_parallel")
>>> ms.set_auto_parallel_context(search_mode="dynamic_programming")
>>> ms.set_auto_parallel_context(auto_parallel_search_mode="dynamic_programming")
>>> ms.set_auto_parallel_context(parameter_broadcast=False)
>>> ms.set_auto_parallel_context(strategy_ckpt_load_file="./strategy_stage1.ckpt")
>>> ms.set_auto_parallel_context(strategy_ckpt_save_file="./strategy_stage1.ckpt")
>>> ms.set_auto_parallel_context(dataset_strategy=((1, 8), (1, 8)))
>>> ms.set_auto_parallel_context(enable_parallel_optimizer=False)
>>> ms.set_auto_parallel_context(enable_alltoall=False)
>>> ms.set_auto_parallel_context(all_reduce_fusion_config=[8, 160])
>>> ms.set_auto_parallel_context(pipeline_stages=2)
>>> parallel_config = {"gradient_accumulation_shard": True, "parallel_optimizer_threshold": 24}
>>> ms.set_auto_parallel_context(parallel_optimizer_config=parallel_config, enable_parallel_optimizer=True)
>>> config = {"allreduce": {"mode": "size", "config": 32}, "allgather": {"mode": "size", "config": 32}}
>>> ms.set_auto_parallel_context(comm_fusion=config)
>>> stra_ckpt_dict = {"load_file": "./stra0.ckpt", "save_file": "./stra1.ckpt", "only_trainable_params": False}
>>> ms.set_auto_parallel_context(strategy_ckpt_config=stra_ckpt_dict)
tinyms.context.get_auto_parallel_context(attr_key)[source]

Get auto parallel context attribute value according to the key.

Parameters:

attr_key (str) – The key of the attribute.

Returns:

Returns attribute value according to the key.

Raises:

ValueError – If input key is not attribute in auto parallel context.

Examples

>>> import mindspore as ms
>>> parallel_mode = ms.get_auto_parallel_context("parallel_mode")
>>> dataset_strategy = ms.get_auto_parallel_context("dataset_strategy")
tinyms.context.reset_auto_parallel_context()[source]

Reset auto parallel context attributes to the default values.

  • device_num: 1.

  • global_rank: 0.

  • gradients_mean: False.

  • gradient_fp32_sync: True.

  • parallel_mode: ‘stand_alone’.

  • search_mode: ‘dynamic_programming’.

  • auto_parallel_search_mode: ‘dynamic_programming’.

  • parameter_broadcast: False.

  • strategy_ckpt_load_file: ‘’.

  • strategy_ckpt_save_file: ‘’.

  • full_batch: False.

  • enable_parallel_optimizer: False.

  • enable_alltoall: False.

  • pipeline_stages: 1.

  • fusion_threshold: 64.

class tinyms.context.ParallelMode[source]

Parallel mode options.

There are five kinds of parallel modes, “STAND_ALONE”, “DATA_PARALLEL”, “HYBRID_PARALLEL”, “SEMI_AUTO_PARALLEL” and “AUTO_PARALLEL”. Default: “STAND_ALONE”.

  • STAND_ALONE: Only one processor is working.

  • DATA_PARALLEL: Distributes the data across different processors.

  • HYBRID_PARALLEL: Achieves data parallelism and model parallelism manually.

  • SEMI_AUTO_PARALLEL: Achieves data parallelism and model parallelism by setting parallel strategies.

  • AUTO_PARALLEL: Achieves parallelism automatically.

MODE_LIST: The list of all supported parallel modes.

tinyms.context.set_ps_context(**kwargs)[source]

Set parameter server training mode context.

Note

Parameter server mode is only supported in graph mode. Some other environment variables should also be set for parameter server training mode. These environment variables are listed below:

MS_SERVER_NUM: Server number

MS_WORKER_NUM: Worker number

MS_SCHED_HOST: Scheduler IP address

MS_SCHED_PORT: Scheduler port

MS_ROLE: The role of this process:

MS_SCHED: represents the scheduler,

MS_WORKER: represents the worker,

MS_PSERVER/MS_SERVER: represents the Server

Parameters:
  • enable_ps (bool) – Whether to enable parameter server training mode. Only after enable_ps is set True, the environment variables will be effective. Default: False.

  • config_file_path (string) – Configuration file path used by recovery, parameter server training mode only supports Server disaster recovery currently. Default: ‘’.

  • scheduler_manage_port (int) – Scheduler manage port used to scale out/in. Default: 11202.

  • enable_ssl (bool) – Set PS SSL mode enabled or disabled. Default: False.

  • client_password (str) – Password to decrypt the secret key stored in the client certificate. Default: ‘’.

  • server_password (str) – Password to decrypt the secret key stored in the server certificate. Default: ‘’.

Raises:

ValueError – If input key is not the attribute in parameter server training mode context.

Examples

>>> import mindspore as ms
>>> ms.set_ps_context(enable_ps=True, enable_ssl=True, client_password='123456', server_password='123456')
tinyms.context.get_ps_context(attr_key)[source]

Get parameter server training mode context attribute value according to the key.

Parameters:

attr_key (str) –

The key of the attribute:

  • enable_ps (bool): Whether to enable parameter server training mode.

  • config_file_path (string): Configuration file path used by recovery, parameter server training mode only supports Server disaster recovery currently. Default: ‘’.

  • scheduler_manage_port (int): Scheduler manage port used to scale out/in. Default: 11202.

  • enable_ssl (bool): Set PS SSL mode enabled or disabled. Default: False.

  • client_password (str): Password to decrypt the secret key stored in the client certificate. Default: ‘’.

  • server_password (str): Password to decrypt the secret key stored in the server certificate. Default: ‘’.

Returns:

Returns attribute value according to the key.

Raises:

ValueError – If input key is not attribute in auto parallel context.

Examples

>>> import mindspore as ms
>>> ms.get_ps_context("enable_ps")
tinyms.context.reset_ps_context()[source]

Reset parameter server training mode context attributes to the default values:

  • enable_ps: False.

Meaning of each field and its default value refer to mindspore.set_ps_context().

tinyms.context.set_offload_context(offload_config)[source]

Set offload context. Some configurations are offload specific, see the below table for details:

Parameters:

offload_config (dict) –

A dict contains the keys and values for setting the offload context

configure.It supports the following keys.

enable_offload (bool): The flag of whether enabling offload. Default: False. offload_param (str): The param for offload destination, cpu or disk. offload_path (str): The path of offload. offload_checkpoint (str): The checkpoint for offload destination, cpu or disk. offload_ddr_size (int): The ddr size for offload. offload_disk_size (int): The disk size for offload. enable_aio (bool): The flag of whether enabling aio. Default: True. aio_block_size (int): The size of aio block. aio_queue_depth (int): The depth of aio queue. enable_pinned_mem (bool): The flag of whether enabling pinned memory.

Raises:

ValueError – If input key is not attribute in auto parallel context.

Examples

>>> from mindspore import context
>>> context.set_offload_context(offload_config={"offload_param"="cpu"})
tinyms.context.get_offload_context()[source]

Get offload context. .. rubric:: Examples

>>> from mindspore import context
>>> offload_config = context.get_offload_context()