Source code for mindspore.nn.layer.thor_layer

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""layers for second order optimization"""
from __future__ import absolute_import

import numpy as np

import mindspore.common.dtype as mstype
import mindspore.log as logger
from mindspore.common.tensor import Tensor
from mindspore.common.initializer import initializer, Initializer
from mindspore.communication.management import get_group_size, get_rank
from mindspore.ops import operations as P
from mindspore.ops.operations._thor_ops import ThorIm2Col
from mindspore.common.parameter import Parameter
from mindspore import _checkparam as Validator
from mindspore._checkparam import twice
from mindspore import context
from mindspore.nn.cell import Cell
from mindspore.nn.layer.activation import get_activation
from mindspore.parallel._ps_context import _is_role_worker, _get_ps_context, \
    _set_rank_id, _insert_hash_table_size, _set_cache_enable
from mindspore.parallel._utils import _get_parallel_mode, _get_full_batch
from mindspore.context import ParallelMode
from mindspore.ops import functional as F
from mindspore.nn.layer.basic import ClipByNorm
from mindspore.ops.primitive import constexpr

__all__ = ['DenseThor', 'Conv2dThor', 'EmbeddingThor', 'EmbeddingLookupThor']


[docs]class DenseThor(Cell): r""" The dense connected layer and saving the information needed for THOR. Applies dense connected layer for the input and saves the information A and G in the dense connected layer needed for THOR. This layer implements the operation as: .. math:: \text{outputs} = \text{activation}(\text{inputs} * \text{kernel} + \text{bias}), where :math:`\text{activation}` is the activation function , :math:`\text{kernel}` is a weight matrix with the same data type as the inputs created by the layer, and :math:`\text{bias}` is a bias vector with the same data type as the inputs created by the layer (only if has_bias is True). Args: in_channels (int): The number of the input channels. out_channels (int): The number of the output channels. weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype is same as `x`. The values of str refer to the function `initializer`. Default: 'normal'. bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is same as `x`. The values of str refer to the function `initializer`. Default: 'zeros'. has_bias (bool): Specifies whether the layer uses a bias vector. Default: True. activation (str): activate function applied to the output of the fully connected layer, eg. 'ReLU'. Default: None. Inputs: - **x** (Tensor) - Tensor of shape :math:`(N, in\_channels)`. Outputs: Tensor of shape :math:`(N, out\_channels)`. Raises: ValueError: If the shape of `weight_init` or `bias_init` is incorrect. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> x = Tensor(np.array([[1, 2, 3], [3, 4, 5]]), mindspore.float32) >>> net = nn.DenseThor(3, 4, weight_init="ones") >>> output = net(x) >>> print(output) [[ 6. 6. 6. 6.] [ 12. 12. 12. 12. ]] """ def __init__(self, in_channels, out_channels, weight_init='normal', bias_init='zeros', has_bias=True, activation=None): """Initialize DenseThor.""" super(DenseThor, self).__init__() self.thor = True self.in_channels = Validator.check_positive_int(in_channels, "in_channels", self.cls_name) self.out_channels = Validator.check_positive_int(out_channels, "out_channels", self.cls_name) self.has_bias = Validator.check_bool(has_bias, "has_bias", self.cls_name) if isinstance(weight_init, Tensor): if weight_init.dim() != 2 or weight_init.shape[0] != out_channels or \ weight_init.shape[1] != in_channels: raise ValueError(f"For '{self.cls_name}', weight init shape error. The dim of 'weight_init' should " f"be equal to 2, and the first dim must be equal to 'out_channels', and the " f"second dim must be equal to 'in_channels'. But got 'weight_init': {weight_init}, " f"'out_channels': {out_channels}, 'in_channels': {in_channels}.") self.weight = Parameter(initializer(weight_init, [out_channels, in_channels]), name="weight") self.bias = None if self.has_bias: if isinstance(bias_init, Tensor): if bias_init.dim() != 1 or bias_init.shape[0] != out_channels: raise ValueError(f"For '{self.cls_name}', bias init shape error. The dim of 'bias_init' should " f"be equal to 1, and the first dim must be equal to 'out_channels'. But got " f"'bias_init': {bias_init}, 'out_channels': {out_channels}.") self.bias = Parameter(initializer(bias_init, [out_channels]), name="bias") self.bias_add = P.BiasAdd() self.matmul = P.MatMul(transpose_b=True) self.activation = get_activation(activation) self.activation_flag = self.activation is not None self.matrix_a = Parameter(Tensor(np.eye(in_channels).astype(np.float32)), name='matrix_a', requires_grad=False) self.matrix_g = Parameter(Tensor(np.eye(out_channels).astype(np.float32)), name="matrix_g", requires_grad=False) self.shape = P.Shape() self.reshape = P.Reshape() self.transpose = P.Transpose() self.mul = P.Mul() self.is_ascend = True self.split_dim = 128 if context.get_context("device_target") == "Ascend": self._process_ascend_dense_thor(out_channels, in_channels) else: self.is_ascend = False self.cube_matmul = P.MatMul(transpose_a=True) self.getG = P.InsertGradientOf(self.save_gradient) def _process_ascend_dense_thor(self, out_channels, in_channels): """process ascend dense thor""" self.matmul = P.MatMul(transpose_b=True) self.cube_matmul = P.CusMatMulCube(transpose_a=True) self.cast = P.Cast() self.is_nsp_layer = (out_channels == 2)
[docs] def save_gradient(self, dout): """ this function only for thor optimizer save_gradient """ out = dout if self.is_ascend: if not self.is_nsp_layer: shape = self.shape(dout) normalizer = self.cast(shape[0], mstype.float32) matrix_g = self.cube_matmul(dout, dout) matrix_g = self.mul(matrix_g, 1.0 / normalizer) self.matrix_g = matrix_g else: dout_shape = self.shape(dout) normalizer = dout_shape[0] matrix_g = self.cube_matmul(dout, dout) matrix_g = self.mul(matrix_g, 1.0 / normalizer) self.matrix_g = matrix_g return out
def construct(self, x): if self.thor: if self.is_ascend: inputs = self.cube_matmul(x, x) shape = self.shape(x) normalizer = self.cast(shape[0], mstype.float32) matrix_a = self.mul(inputs, 1.0 / normalizer) self.matrix_a = matrix_a else: inputs = self.cube_matmul(x, x) inputs_shape = self.shape(inputs) normalizer = inputs_shape[0] matrix_a = self.mul(inputs, 1.0 / normalizer) self.matrix_a = matrix_a x = self.matmul(x, self.weight) x = self.getG(x) else: x = self.matmul(x, self.weight) if self.has_bias: x = self.bias_add(x, self.bias) if self.activation_flag: x = self.activation(x) # We use Depend to make 'self.matrix_g' as primal graph's weight parameter, # for it's used in 'save_gradient' gradient procedure. return F.depend(x, self.matrix_g) def extend_repr(self): s = 'input_channels={}, output_channels={}'.format(self.in_channels, self.out_channels) if self.has_bias: s += ', has_bias={}'.format(self.has_bias) return s
class _ConvThor(Cell): """ Applies a N-D convolution over an input signal composed of multiple input planes. """ def __init__(self, in_channels, out_channels, kernel_size, stride, pad_mode, padding, dilation, group, has_bias, weight_init, bias_init, transposed=False): """Initialize _ConvThor.""" super(_ConvThor, self).__init__() self.in_channels = Validator.check_positive_int(in_channels, "in_channels", self.cls_name) self.out_channels = Validator.check_positive_int(out_channels, "out_channels", self.cls_name) self.kernel_size = kernel_size self.stride = stride self.pad_mode = pad_mode self.bias_init = bias_init if isinstance(padding, tuple): for pad in padding: Validator.check_non_negative_int(pad, 'padding item', self.cls_name) self.padding = padding elif isinstance(padding, int): Validator.check_non_negative_int(padding, 'padding', self.cls_name) self.padding = padding else: raise TypeError(f"For '{self.cls_name}', the type of 'padding' must be int/tuple(int), but got " f"{type(padding).__name__}.") self.dilation = dilation self.group = Validator.check_positive_int(group, "group", self.cls_name) self.has_bias = has_bias self.__validate_kernel_size(kernel_size) self.__validate_stride(stride) self.__validate_dilation(dilation) if in_channels % group != 0: raise ValueError(f"For '{self.cls_name}', the 'in_channels' must be divisible by 'group', but got " f"'in_channels': {in_channels} and 'group': {group}.") if out_channels % group != 0: raise ValueError(f"For '{self.cls_name}', the 'out_channels' must be divisible by 'group', but got " f"'out_channels': {out_channels} and 'group': {group}.") if not transposed: shape = [out_channels, in_channels // group, *kernel_size] else: shape = [in_channels, out_channels // group, *kernel_size] self.weight = Parameter(initializer(weight_init, shape), name='weight') if Validator.check_bool(has_bias, "has_bias", self.cls_name): self.bias = Parameter(initializer(self.bias_init, [out_channels]), name='bias') else: if self.bias_init != 'zeros': logger.warning("Value of 'has_bias' is False, value of 'bias_init' will be ignored.") self.bias = None def __validate_kernel_size(self, kernel_size): """validate kernel size.""" if (not isinstance(kernel_size[0], int)) or (not isinstance(kernel_size[1], int)) or \ isinstance(kernel_size[0], bool) or isinstance(kernel_size[1], bool) or \ kernel_size[0] < 1 or kernel_size[1] < 1: raise ValueError(f"For '{self.cls_name}', all elements in 'kernel_size' must be int or tuple and " f"equal to or greater than 1, but got 'kernel_size': {kernel_size}.") def __validate_stride(self, stride): """validate stride.""" if (not isinstance(stride[0], int)) or (not isinstance(stride[1], int)) or \ isinstance(stride[0], bool) or isinstance(stride[1], bool) or stride[0] < 1 or stride[1] < 1: raise ValueError(f"For '{self.cls_name}', all elements in 'stride' must be int or tuple and " f"equal to or greater than 1, but got 'stride': {stride}.") def __validate_dilation(self, dilation): """validate dilation.""" if (not isinstance(dilation[0], int)) or (not isinstance(dilation[1], int)) or \ isinstance(dilation[0], bool) or isinstance(dilation[1], bool) or dilation[0] < 1 or dilation[1] < 1: raise ValueError(f"For '{self.cls_name}', all elements in 'dilation' must be int or tuple and " f"equal to or greater than 1, but got 'dilation': {dilation}.")
[docs]class Conv2dThor(_ConvThor): r""" 2D convolution layer and saving the information needed for THOR. Applies a 2D convolution over an input tensor which is typically of shape :math:`(N, C_{in}, H_{in}, W_{in})`, where :math:`N` is batch size, :math:`C_{in}` is channel number, and :math:`H_{in}, W_{in})` are height and width. And saves the information A and G in the 2D convolution layer needed for THOR. For each batch of shape :math:`(C_{in}, H_{in}, W_{in})`, the formula is defined as: .. math:: out_j = \sum_{i=0}^{C_{in} - 1} ccor(W_{ij}, X_i) + b_j, where :math:`ccor` is the cross-correlation operator, :math:`C_{in}` is the input channel number, :math:`j` ranges from :math:`0` to :math:`C_{out} - 1`, :math:`W_{ij}` corresponds to the :math:`i`-th channel of the :math:`j`-th filter and :math:`out_{j}` corresponds to the :math:`j`-th channel of the output. :math:`W_{ij}` is a slice of kernel and it has shape :math:`(\text{ks_h}, \text{ks_w})`, where :math:`\text{ks_h}` and :math:`\text{ks_w}` are the height and width of the convolution kernel. The full kernel has shape :math:`(C_{out}, C_{in} // \text{group}, \text{ks_h}, \text{ks_w})`, where group is the group number to split the input `x` in the channel dimension. If the 'pad_mode' is set to be "valid", the output height and width will be :math:`\left \lfloor{1 + \frac{H_{in} + 2 \times \text{padding} - \text{ks_h} - (\text{ks_h} - 1) \times (\text{dilation} - 1) }{\text{stride}}} \right \rfloor` and :math:`\left \lfloor{1 + \frac{W_{in} + 2 \times \text{padding} - \text{ks_w} - (\text{ks_w} - 1) \times (\text{dilation} - 1) }{\text{stride}}} \right \rfloor` respectively. Note: For Ascend, the type of inputs should be subclass of Tensor[Float16], Tensor[Int8]. For GPU, the type of inputs should be subclass of Tensor[Float32]. Args: in_channels (int): The number of the input channel :math:`C_{in}`. out_channels (int): The number of the output channel :math:`C_{out}`. kernel_size (Union[int, tuple[int]]): The data type is int or a tuple of 2 integers. Specifies the height and width of the 2D convolution window. Single int means that the value is not only the height, but also the width of the kernel. A tuple of 2 integers means the height and the width of the kernel respectively. stride (Union[int, tuple[int]]): The distance of kernel moving, an int number represents the height and width of movement, or a tuple of two int numbers that represent height and width of movement, respectively. Default: 1. pad_mode (str): Specifies padding mode. The optional values are "same", "valid", "pad". Default: "same". - same: Adopts the way of completion. The shape of the output will be the same as the `x`. The total number of padding will be calculated in horizontal and vertical directions and evenly distributed to top and bottom, left and right if possible. Otherwise, the last extra padding will be done from the bottom and the right side. If this mode is set, `padding` must be 0. - valid: Adopts the way of discarding. The possible largest height and width of output will be returned without padding. Extra pixels will be discarded. If this mode is set, `padding` must be 0. - pad: Implicit paddings on both sides of the input `x`. The number of `padding` will be padded to the input Tensor borders. `padding` must be greater than or equal to 0. padding (Union[int, tuple[int]]): Implicit paddings on both sides of the input `x`. If `padding` is an integer, the paddings of top, bottom, left and right are the same, equal to padding. If `padding` is a tuple with four integers, the paddings of top, bottom, left and right will be equal to padding[0], padding[1], padding[2], and padding[3] accordingly. Default: 0. dilation (Union[int, tuple[int]]): The data type is int or a tuple of 2 integers. Specifies the dilation rate to use for dilated convolution. If set to be :math:`k > 1`, there will be :math:`k - 1` pixels skipped for each sampling location. Its value must be greater or equal to 1 and bounded by the height and width of the input `x`. Default: 1. group (int): Splits filter into groups, `in_ channels` and `out_channels` must be divisible by the number of groups. If the group is equal to `in_channels` and `out_channels`, this 2D convolution layer also can be called 2D depthwise convolution layer. Default: 1. has_bias (bool): Specifies whether the layer uses a bias vector. Default: False. weight_init (Union[Tensor, str, Initializer, numbers.Number]): Initializes the convolution kernel. It can be a Tensor, a string, an Initializer or a number. When a string is specified, values from 'TruncatedNormal', 'Normal', 'Uniform', 'HeUniform' and 'XavierUniform' distributions as well as constant 'One' and 'Zero' distributions are possible. Alias 'xavier_uniform', 'he_uniform', 'ones' and 'zeros' are acceptable. Uppercase and lowercase are both acceptable. Refer to the values of Initializer for more details. Default: 'normal'. bias_init (Union[Tensor, str, Initializer, numbers.Number]): Initializes the bias vector. Possible Initializer and string are the same as 'weight_init'. Refer to the values of Initializer for more details. Default: 'zeros'. Inputs: - **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`. Outputs: Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> net = nn.Conv2dThor(120, 240, 4, has_bias=False, weight_init='normal') >>> # for Ascend >>> x = Tensor(np.ones([1, 120, 1024, 640]), mindspore.float16) >>> print(net(x).shape) (1, 240, 1024, 640) """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, pad_mode='same', padding=0, dilation=1, group=1, has_bias=False, weight_init='normal', bias_init='zeros'): """Initialize Conv2dThor.""" kernel_size = twice(kernel_size) stride = twice(stride) self._dilation = dilation dilation = twice(dilation) super(Conv2dThor, self).__init__(in_channels, out_channels, kernel_size, stride, pad_mode, padding, dilation, group, has_bias, weight_init, bias_init) self.conv2d = P.Conv2D(out_channel=self.out_channels, kernel_size=self.kernel_size, mode=1, pad_mode=self.pad_mode, pad=self.padding, stride=self.stride, dilation=self.dilation, group=self.group) self._init_depthwise_conv2d(weight_init) self.bias_add = P.BiasAdd() self.thor = True self.hw = kernel_size[0] * kernel_size[1] self.matrix_a_dim = self.in_channels * self.kernel_size[0] * self.kernel_size[1] self.matrix_g_dim = self.out_channels self.shape = P.Shape() self.reshape = P.Reshape() self.mul = P.Mul() self.cast = P.Cast() self.a_normalizer = Parameter(initializer(1, [1], mstype.float32), name="a_normalizer", requires_grad=False) self.g_normalizer = Parameter(initializer(1, [1], mstype.float32), name="g_normalizer", requires_grad=False) self.is_ascend = True if context.get_context("device_target") == "Ascend": self._process_ascend_conv2d_thor(kernel_size, stride) else: self.is_ascend = False self.img2col = ThorIm2Col(kernel_size=kernel_size, stride=stride, pad_mode="same") self.matmul = P.MatMul(transpose_b=True) self.reduce_mean = P.ReduceMean(keep_dims=False) self.matrix_a_cov = Parameter(Tensor(np.zeros([self.matrix_a_dim, self.matrix_a_dim]).astype(np.float32)), name='matrix_a', requires_grad=False) self.matrix_g_cov = Parameter(Tensor(np.zeros([self.matrix_g_dim, self.matrix_g_dim]).astype(np.float32)), name='matrix_g', requires_grad=False) self.getG = P.InsertGradientOf(self.save_gradient) def _process_ascend_conv2d_thor(self, kernel_size, stride): """process ascend conv2d thor""" ksizes = (1, kernel_size[0], kernel_size[1], 1) strides = (1, stride[0], stride[1], 1) ksizes_tbe = (kernel_size[0], kernel_size[1]) self.img2col = P.CusImg2Col(ksizes=ksizes, strides=strides) self.transpose = P.Transpose() self.reshape = P.Reshape() self.cube_matmul = P.CusMatMulCube(transpose_a=True) self.diag_block_dim = 128 self.matrix_a_cov = Parameter(Tensor(np.eye(self.matrix_a_dim).astype(np.float32)), name='matrix_a', requires_grad=False) self.matrix_g_cov = Parameter(Tensor(np.eye(self.matrix_g_dim).astype(np.float32)), name='matrix_g', requires_grad=False) self.slice = P.Slice() self.im2col = P.NewIm2Col(ksizes=ksizes_tbe, strides=stride[0], padding_mode="SAME") def _init_depthwise_conv2d(self, weight_init): """Initialize depthwise conv2d op""" if context.get_context("device_target") == "Ascend" and self.group > 1: self.dilation = self._dilation Validator.check_int('group', self.group, self.in_channels, Validator.EQ, self.cls_name) Validator.check_int('group', self.group, self.out_channels, Validator.EQ, self.cls_name) self.conv2d = P.DepthwiseConv2dNative(channel_multiplier=1, kernel_size=self.kernel_size, pad_mode=self.pad_mode, pad=self.padding, stride=self.stride, dilation=self.dilation) weight_shape = [1, self.in_channels, *self.kernel_size] self.weight_init = weight_init if isinstance(weight_init, Tensor): self.weight_init = Tensor(weight_init.asnumpy().swapaxes(0, 1), weight_init.dtype) if isinstance(weight_init, Initializer): self.weight_init.shape = weight_shape self.weight = Parameter(initializer(self.weight_init, weight_shape), name='weight')
[docs] def save_gradient(self, dout): """save_gradient""" out = dout if self.is_ascend: dout_shape = self.shape(dout) dout = self.transpose(dout, (0, 2, 3, 1)) dout = self.reshape(dout, (-1, dout_shape[1])) dout_shape = self.shape(dout) normalizer = dout_shape[0] matrix_g = self.cube_matmul(dout, dout) normalizer = self.cast(normalizer, mstype.float32) matrix_g = self.mul(matrix_g, 1.0 / normalizer) self.g_normalizer = normalizer self.matrix_g_cov = matrix_g else: dout = self.reduce_mean(dout, 0) dout_shape = self.shape(dout) dout = self.reshape(dout, (dout_shape[0], -1)) dout_shape = self.shape(dout) normalizer = dout_shape[1] dout = self.cast(dout, mstype.float32) matrix_g = self.matmul(dout, dout) matrix_g = self.mul(matrix_g, 1.0 / normalizer) self.g_normalizer = normalizer self.matrix_g_cov = matrix_g return out
def construct(self, x): if self.thor: if self.is_ascend: matrix_a = self.im2col(x) matrix_a_shape = self.shape(matrix_a) y = matrix_a_shape[3] matrix_a = self.reshape(matrix_a, (-1, y)) matrix_a_shape = self.shape(matrix_a) normalizer = matrix_a_shape[0] matrix_a = self.cube_matmul(matrix_a, matrix_a) normalizer = self.cast(normalizer, mstype.float32) matrix_a = self.mul(matrix_a, 1.0 / normalizer) self.a_normalizer = normalizer self.matrix_a_cov = matrix_a weight = self.cast(self.weight, mstype.float16) output = self.conv2d(x, weight) output = self.getG(output) else: matrix_a = self.img2col(x) matrix_a_shape = self.shape(matrix_a) matrix_a = self.reshape(matrix_a, (matrix_a_shape[0] * matrix_a_shape[1] * matrix_a_shape[2], matrix_a_shape[3], -1)) matrix_a = self.reduce_mean(matrix_a, 1) matrix_a_shape = self.shape(matrix_a) normalizer = matrix_a_shape[1] matrix_a = self.cast(matrix_a, mstype.float32) matrix_a = self.matmul(matrix_a, matrix_a) matrix_a = self.mul(matrix_a, 1.0 / normalizer) self.a_normalizer = normalizer self.matrix_a_cov = matrix_a output = self.conv2d(x, self.weight) output = self.getG(output) else: if self.is_ascend: weight = self.cast(self.weight, mstype.float16) output = self.conv2d(x, weight) else: output = self.conv2d(x, self.weight) if self.has_bias: if self.is_ascend: bias = self.cast(self.bias, mstype.float16) output = self.bias_add(output, bias) else: output = self.bias_add(output, self.bias) return output def extend_repr(self): s = 'input_channels={}, output_channels={}, kernel_size={}, stride={}, ' \ 'pad_mode={}, padding={}, dilation={}, group={}, has_bias={}, ' \ 'bias_init={}'.format(self.in_channels, self.out_channels, self.kernel_size, self.stride, self.pad_mode, self.padding, self.dilation, self.group, self.has_bias, self.bias_init) return s
[docs]class EmbeddingThor(Cell): r""" A simple lookup table that stores embeddings of a fixed dictionary and size and saving the information needed for THOR. This module is often used to store word embeddings and retrieve them using indices. The input to the module is a list of indices, and the output is the corresponding word embeddings. And saves the information A and G in the dense connected layer needed for THOR. Note: When 'use_one_hot' is set to True, the type of the input `x` must be mindspore.int32. Args: vocab_size (int): The size of the dictionary of embeddings. embedding_size (int): The size of each embedding vector. use_one_hot (bool): Specifies whether to apply one_hot encoding form. Default: False. embedding_table (Union[Tensor, str, Initializer, numbers.Number]): Initializes the embedding_table. Refer to class `initializer` for the values of string when a string is specified. Default: 'normal'. dtype (:class:`mindspore.dtype`): Data type of input `x`. Default: mindspore.float32. padding_idx (int, None): When the padding_idx encounters index, the output embedding vector of this index will be initialized to zero. Default: None. The feature is inactivated. Inputs: - **x** (Tensor) - Tensor of input shape :math:`(\text{batch_size}, \text{x_length})`. The elements of the Tensor must be integer and not larger than vocab_size. Otherwise the corresponding embedding vector will be zero. Outputs: Tensor of output shape :math:`(\text{batch_size}, \text{x_length}, \text{embedding_size})`. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> net = nn.EmbeddingThor(20000, 768, True) >>> x = Tensor(np.ones([8, 128]), mindspore.int32) >>> >>> # Maps the input word IDs to word embedding. >>> output = net(x) >>> output.shape (8, 128, 768) """ def __init__(self, vocab_size, embedding_size, use_one_hot=False, embedding_table='normal', dtype=mstype.float32, padding_idx=None): """Initialize EmbeddingThor.""" super(EmbeddingThor, self).__init__() self.vocab_size = Validator.check_value_type('vocab_size', vocab_size, [int], self.cls_name) self.embedding_size = Validator.check_value_type('embedding_size', embedding_size, [int], self.cls_name) Validator.check_value_type('use_one_hot', use_one_hot, [bool], self.cls_name) Validator.check_subclass("dtype", dtype, mstype.number_type, self.cls_name) self.use_one_hot = use_one_hot self.dtype = dtype self.init_tensor = initializer(embedding_table, [vocab_size, embedding_size]) self.padding_idx = padding_idx if padding_idx is not None: self.padding_idx = Validator.check_int_range(padding_idx, 0, vocab_size, Validator.INC_BOTH, "padding_idx", self.cls_name) self.init_tensor = self.init_tensor.init_data().asnumpy() self.init_tensor[self.padding_idx] = 0 self.embedding_table = Parameter(self.init_tensor, name='embedding_table') self.expand = P.ExpandDims() self.reshape_flat = P.Reshape() self.shp_flat = (-1,) self.gather = P.GatherV2() self.one_hot = P.OneHot() self.on_value = Tensor(1.0, self.dtype) self.off_value = Tensor(0.0, self.dtype) self.array_mul = P.MatMul() self.reshape = P.Reshape() self.get_shp = P.Shape() self.thor = True self.matrix_a = Parameter(Tensor(np.zeros([vocab_size]).astype(np.float32)), name='matrix_a', requires_grad=False) self.matrix_g = Parameter(Tensor(np.zeros([embedding_size, embedding_size]).astype(np.float32)), name="matrix_g", requires_grad=False) self.reduce_sum = P.ReduceSum(keep_dims=False) self.getG = P.InsertGradientOf(self.save_gradient) self.cast = P.Cast() if context.get_context("device_target") == "Ascend": self.cube_matmul = P.CusMatMulCube(transpose_a=True) else: self.cube_matmul = P.MatMul(transpose_a=True) self.mul = P.Mul()
[docs] def save_gradient(self, dout): """ this function only for thor optimizer save_gradient """ out = dout shape = self.get_shp(dout) normalizer = self.cast(shape[0], mstype.float32) matrix_g = self.cube_matmul(dout, dout) matrix_g = self.mul(matrix_g, 1.0 / normalizer) self.matrix_g = matrix_g return out
def construct(self, ids): extended_ids = self.expand(ids, -1) out_shape = self.get_shp(ids) + (self.embedding_size,) flat_ids = self.reshape_flat(extended_ids, self.shp_flat) if self.use_one_hot: one_hot_ids = self.one_hot(flat_ids, self.vocab_size, self.on_value, self.off_value) output_for_reshape = self.array_mul(one_hot_ids, self.embedding_table) else: if self.thor: one_hot_ids = self.one_hot(flat_ids, self.vocab_size, self.on_value, self.off_value) matrix_a = self.reduce_sum(one_hot_ids, 0) self.matrix_a = matrix_a output_for_reshape = self.gather(self.embedding_table, flat_ids, 0) output_for_reshape = self.getG(output_for_reshape) else: output_for_reshape = self.gather(self.embedding_table, flat_ids, 0) output = self.reshape(output_for_reshape, out_shape) # We use Depend to make 'self.matrix_g' as primal graph's weight parameter, # for it's used in 'save_gradient' gradient procedure. return F.depend(output, self.matrix_g) def extend_repr(self): s = 'vocab_size={}, embedding_size={}, use_one_hot={}, embedding_table={}, dtype={}, padding_idx={}'.format( self.vocab_size, self.embedding_size, self.use_one_hot, self.embedding_table, self.dtype, self.padding_idx) return s
@constexpr def _make_axis_range(start, end): axis = tuple(range(start, end)) return axis
[docs]class EmbeddingLookupThor(Cell): r""" Returns a slice of the input tensor based on the specified indices and saving the information needed for THOR. This module has the same function as EmbeddingLookup, but additionally saves the information A and G in the embeddinglookup layer needed for THOR. Args: vocab_size (int): The size of the dictionary of embeddings. embedding_size (int): The size of each embedding vector. param_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the embedding_table. Refer to class `initializer` for the values of string when a string is specified. Default: 'normal'. target (str): Specifies the target where the op is executed. The value must in ['DEVICE', 'CPU']. Default: 'CPU'. slice_mode (str): The slicing way in semi_auto_parallel/auto_parallel. The value must get through nn.EmbeddingLookup. Default: nn.EmbeddingLookup.BATCH_SLICE. manual_shapes (tuple): The accompaniment array in field slice mode. max_norm (Union[float, None]): A maximum clipping value. The data type must be float16, float32 or None. Default: None sparse (bool): Using sparse mode. When 'target' is set to 'CPU', 'sparse' has to be true. Default: True. vocab_cache_size (int): Cache size of the dictionary of embeddings. Default: 0. It is valid only in 'DEVICE' target. And the moment parameter of corresponding optimizer will also be set to the cache size. In addition, it should be noted that it will cost the 'DEVICE' memory, so suggests setting a reasonable value to avoid insufficient memory. Inputs: - **input_indices** (Tensor) - The shape of tensor is :math:`(y_1, y_2, ..., y_S)`. Outputs: Tensor, the shape of tensor is :math:`(z_1, z_2, ..., z_N)`. Raises: ValueError: If `target` is neither 'CPU' nor 'DEVICE'. ValueError: If `slice_mode` is not one of 'batch_slice' or 'field_slice' or 'table_row_slice' or 'table_column_slice'. ValueError: If `sparse` is False and `target` is 'CPU'. ValueError: If `slice_mode` is 'field_slice' and `manual_shapes` is None. TypeError: If `vocab_size` or `embedding_size` or `vocab_cache_size` is not an int. TypeError: If `sparse` is not a bool or `manual_shapes` is not a tuple. ValueError: If `vocab_size` or `embedding_size` is less than 1. ValueError: If `vocab_cache_size` is less than 0. Supported Platforms: ``Ascend`` Examples: >>> input_indices = Tensor(np.array([[1, 0], [3, 2]]), mindspore.int32) >>> result = nn.EmbeddingLookup(4,2)(input_indices) >>> print(result.shape) (2, 2, 2) """ BATCH_SLICE = "batch_slice" FIELD_SLICE = "field_slice" TABLE_ROW_SLICE = "table_row_slice" TABLE_COLUMN_SLICE = "table_column_slice" def __init__(self, vocab_size, embedding_size, param_init='normal', target='CPU', slice_mode='batch_slice', manual_shapes=None, max_norm=None, sparse=True, vocab_cache_size=0): super(EmbeddingLookupThor, self).__init__() Validator.check_value_type('sparse', sparse, [bool], self.cls_name) self.vocab_size = Validator.check_positive_int(vocab_size, 'vocab_size', self.cls_name) self.vocab_cache_size = Validator.check_non_negative_int(vocab_cache_size, 'vocab_cache_size', self.cls_name) self.target = target self.sparse = sparse self.cache_enable = self.vocab_cache_size > 0 self.forward_unique = False self.dtype = mstype.float16 if target not in ('CPU', 'DEVICE'): raise ValueError(f"For '{self.cls_name}', the 'target' must be one of values in ('CPU', 'DEVICE'), " f"but got {target}.") if not sparse and target == 'CPU': raise ValueError(f"For '{self.cls_name}', embedding_lookup must be sparse when 'target' is CPU, but got " f"'sparse': {sparse}, 'target': {target}.") if sparse: self.gatherv2 = P.SparseGatherV2() else: self.gatherv2 = P.Gather() self.embeddinglookup = P.EmbeddingLookup().set_device('CPU') enable_ps = _get_ps_context("enable_ps") if enable_ps: self._process_vocab_cache(slice_mode) self.embedding_size = Validator.check_positive_int(embedding_size, 'embedding_size', self.cls_name) self.embedding_table = Parameter(initializer(param_init, [self.vocab_size, self.embedding_size], mstype.float16), name='embedding_table') parallel_mode = _get_parallel_mode() is_auto_parallel = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL) self.gather_revert = P.Gather() self.reshape_first = P.Reshape() self.reshape = P.Reshape() self.unique = P.Unique() self.shape = P.Shape() if is_auto_parallel: self.unique = P.Unique().shard(((1,),)) if self.cache_enable and enable_ps: self._set_voacb_cache_enable_for_ps(vocab_cache_size, embedding_size, vocab_size) if is_auto_parallel: self.unique.add_prim_attr('cache_enable', True) indices_shape_size = 2 if slice_mode == "field_slice" and is_auto_parallel: if not manual_shapes: raise ValueError(f"For '{self.cls_name}', the 'manual_shapes' should not be none " f"when 'slice_mode' is 'field_slice'.") if not isinstance(manual_shapes, tuple): raise TypeError(f"For '{self.cls_name}', the type of 'manual_shapes' must be tuple(int), but got " f"type {type(manual_shapes).__name__}.") for dim in manual_shapes: Validator.check_positive_int(dim, 'manual shape dim', self.cls_name) self.gatherv2.add_prim_attr("manual_split", manual_shapes) self.embeddinglookup.add_prim_attr("manual_split", manual_shapes) self.gatherv2.shard(((get_group_size(), 1), (1, get_group_size()))) self.embeddinglookup.shard(((get_group_size(), 1), (1, get_group_size()))) elif slice_mode == "table_row_slice" and is_auto_parallel: full_batch = _get_full_batch() if (target == 'DEVICE' and not full_batch) or (self.cache_enable and enable_ps and sparse): indices_shape_size = 1 self.gather_revert.shard(((1, 1), (get_group_size(),))) self.forward_unique = True indices_strategy = (1,) * indices_shape_size self.gatherv2.shard(((get_group_size(), 1), indices_strategy)) self.embeddinglookup.shard(((get_group_size(), 1), indices_strategy)) elif slice_mode == "table_column_slice" and is_auto_parallel: if target == 'DEVICE': indices_shape_size = 1 self.gather_revert.shard(((1, get_group_size()), (1,))) self.forward_unique = True indices_strategy = (1,) * indices_shape_size self.gatherv2.shard(((1, get_group_size()), indices_strategy)) self.embeddinglookup.shard(((1, get_group_size()), indices_strategy)) elif slice_mode == "batch_slice" and is_auto_parallel: indices_strategy = [get_group_size()] indices_strategy.extend([1] * (indices_shape_size - 1)) indices_strategy = tuple(indices_strategy) self.gatherv2.shard(((1, 1), indices_strategy)) self.embeddinglookup.shard(((1, 1), indices_strategy)) else: if is_auto_parallel: raise ValueError(f"For '{self.cls_name}', the 'slice_mode' must be one of values in " f"['field_slice', 'table_row_slice', 'table_column_slice', 'batch_slice'], " f"but got 'slice_mode': {slice_mode}") if self.cache_enable and not enable_ps: if parallel_mode != ParallelMode.STAND_ALONE: raise ValueError(f"For '{self.cls_name}', the 'parallel_mode' must be equal to " f"'ParallelMode.STAND_ALONE', but got {parallel_mode}.") self._set_cache_enable() self.embedding_table.unique = self.forward_unique self.max_norm = max_norm if self.max_norm is not None: self.max_norm = Validator.check_positive_float(self.max_norm, 'max_norm', self.cls_name) self.max_norm = Tensor(self.max_norm, dtype=mstype.float16) self.thor = True self.matrix_a = Parameter(Tensor(np.zeros([vocab_size]).astype(np.float32)), name='matrix_a', requires_grad=False) self.matrix_g = Parameter(Tensor(np.zeros([embedding_size, embedding_size]).astype(np.float32)), name="matrix_g", requires_grad=False) self.reduce_sum = P.ReduceSum(keep_dims=False) self.getG = P.InsertGradientOf(self.save_gradient) self.cast = P.Cast() self.cube_matmul = P.MatMul(transpose_a=True) self.mul = P.Mul() self.on_value = Tensor(1.0, self.dtype) self.off_value = Tensor(0.0, self.dtype) self.one_hot = P.OneHot()
[docs] def save_gradient(self, dout): """ this function only for thor optimizer save_gradient """ out = dout shape = self.shape(dout) normalizer = self.cast(shape[0], mstype.float16) dout = self.reshape(dout, (-1, self.embedding_size)) matrix_g = self.cube_matmul(dout, dout) matrix_g = self.mul(matrix_g, 1.0 / normalizer) matrix_g = self.cast(matrix_g, mstype.float16) self.matrix_g = matrix_g return out
def _set_cache_enable(self): """EmbeddingLookup cache check for not ps env, which is only support 'ascend'.""" if self.target != 'DEVICE': raise ValueError(f"For '{self.cls_name}', the configuration of 'vocab_cache_size' is valid " f"only when 'target' is 'DEVICE', but got 'target': {self.target}.") if not self.sparse: raise ValueError(f"For '{self.cls_name}', the configuration of 'vocab_cache_size' is valid " f"only when 'sparse' is true, but got 'sparse': {self.sparse}.") if context.get_context("device_target") != 'Ascend': raise ValueError(f"For '{self.cls_name}', the configuration of 'vocab_cache_size' is valid " f"only when 'device_target' is 'Ascend', but got {context.get_context('device_target')}.") logger.info("EmbeddingLookup cache enable takes effect.") self.forward_unique = True self.unique = P.Unique().set_device('CPU') self.unique.add_prim_attr('cache_enable', True) self.embedding_table.cache_enable = self.cache_enable self.embedding_table.cache_shape = (self.vocab_cache_size, self.embedding_size) self.reshape_first = P.Reshape().set_device('CPU') def _process_vocab_cache(self, slice_mode): """PS embeddingLookup cache check and process.""" self.cache_enable = False if self.vocab_cache_size > 0: if self.target == 'CPU': logger.warning("The configuration of 'vocab_cache_size' is valid only in 'DEVICE' target, " "current target is CPU, so it will be ignored.") return enable_ps = _get_ps_context("enable_ps") if not enable_ps: logger.warning( "The configuration of 'vocab_cache_size' is valid only in parameter server trainning " "mode, current mode is not parameter server trainning mode, so it will be ignored.") return parallel_mode = _get_parallel_mode() is_auto_parallel = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL) if is_auto_parallel: rank_size = get_group_size() rank_id = get_rank() full_batch = _get_full_batch() if rank_size > 1 and not (full_batch and slice_mode == "table_row_slice"): raise ValueError(f"For '{self.cls_name}', the embeddingLookup cache of parameter server parallel " f"only be used in 'full_batch' and 'table_row_slice' parallel strategy, but got " f"'full_batch': {full_batch}, 'slice_mode': {slice_mode}.") self.vocab_cache_size = self.vocab_cache_size * rank_size _set_rank_id(rank_id) self.cache_enable = True if _is_role_worker(): self.vocab_size = self.vocab_cache_size def _set_voacb_cache_enable_for_ps(self, vocab_cache_size, embedding_size, vocab_size): """PS embeddingLookup cache enable set.""" self.embedding_table.cache_enable = True self.embedding_table.is_param_ps = True _set_cache_enable(True) if self.sparse: self.forward_unique = True if _is_role_worker(): _insert_hash_table_size(self.embedding_table.name, vocab_cache_size, embedding_size, vocab_size) def construct(self, indices): if self.target == "CPU": out = self.embeddinglookup(self.embedding_table, indices, 0) else: if self.thor: if self.forward_unique: shp = self.shape(indices) + (self.embedding_size,) indices_flatten = self.reshape_first(indices, (-1,)) unique_id, unique_idx = self.unique(indices_flatten) one_hot_ids = self.one_hot(indices_flatten, self.vocab_size, self.on_value, self.off_value) matrix_a = self.reduce_sum(one_hot_ids, 0) matrix_a = self.cast(matrix_a, mstype.float16) self.matrix_a = matrix_a weight_unique = self.gatherv2(self.embedding_table, unique_id, 0) out = self.getG(weight_unique) weight_flatten = self.gather_revert(weight_unique, unique_idx, 0) out = self.reshape(weight_flatten, shp) else: indices_flatten = self.reshape_first(indices, (-1,)) one_hot_ids = self.one_hot(indices_flatten, self.vocab_size, self.on_value, self.off_value) matrix_a = self.reduce_sum(one_hot_ids, 0) matrix_a = self.cast(matrix_a, mstype.float16) self.matrix_a = matrix_a out = self.gatherv2(self.embedding_table, indices, 0) out = self.getG(out) else: if self.forward_unique: shp = self.shape(indices) + (self.embedding_size,) indices_flatten = self.reshape_first(indices, (-1,)) unique_id, unique_idx = self.unique(indices_flatten) weight_unique = self.gatherv2(self.embedding_table, unique_id, 0) weight_flatten = self.gather_revert(weight_unique, unique_idx, 0) out = self.reshape(weight_flatten, shp) else: out = self.gatherv2(self.embedding_table, indices, 0) if self.max_norm is not None: axis = _make_axis_range(F.rank(indices), F.rank(out)) clip_by_norm = ClipByNorm(axis) out = clip_by_norm(out, self.max_norm) # We use Depend to make 'self.matrix_g' as primal graph's weight parameter, # for it's used in 'save_gradient' gradient procedure. return F.depend(out, self.matrix_g)